Spatiotemporal Traffic Flow Prediction with KNN and LSTM
نویسندگان
چکیده
منابع مشابه
Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملSpatiotemporal Traffic Prediction using Semantic Traffic Analytics and Reasoning(STAR) With Big Data Environment
In Urban Mobility Report, delays due to heavy traffic costing Americans $78 billion in the form of 4.2 billion lost hours and 2.9 billion gallons of wasted fuel. In addition, 2/3 of traffic delays are caused not by recurring congestion but by point-based spontaneous congestion due to traffic incidences. STAR-CITY, which integrates (human and machine-based) sensor data using variety of formats, ...
متن کاملOn stock return prediction with LSTM networks
Artificial neural networks are, again, on the rise. The decreasing costs of computing power and the availability of big data together with advancements of neural network theory have made this possible. In this thesis, LSTM (long short-term memory) recurrent neural networks are used in order to perform financial time series forecasting on return data of three stock indices. The indices are S&P 5...
متن کاملLearning to Forget: Continual Prediction with LSTM
Long short-term memory (LSTM; Hochreiter & Schmidhuber, 1997) can solve numerous tasks not solvable by previous learning algorithms for recurrent neural networks (RNNs). We identify a weakness of LSTM networks processing continual input streams that are not a priori segmented into subsequences with explicitly marked ends at which the network's internal state could be reset. Without resets, the ...
متن کاملSpatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Advanced Transportation
سال: 2019
ISSN: 0197-6729,2042-3195
DOI: 10.1155/2019/4145353